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Abstract
We reply to Tsekov’s comments (2007 J. Phys. A: Math. Theor. 40 10945)
concerning the semiclassical quantum master equation.

PACS numbers: 03.65.Yz, 05.40.−a

In his comments Tsekov [1] has discussed the range of the applicability of the semiclassical
Smoluchowski equation for the configuration space distribution function P(x, t) =∫ ∞
−∞ W(x, p, t) dp derived in [2], namely,
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where W(x, p, t) is the Wigner distribution function in the phase space (x, p); ζ = γm

and Deff = D[1 + (h̄2β2/12m)V ′′(x)] + O(h̄4) have the meaning of friction and diffusion
coefficients, respectively; D = 1/(ζβ), h̄ is Planck’s constant, m is the mass of the particle
and γ is a friction parameter measuring the strength of the coupling to the heat bath. We recall
that equation (1) has been obtained by a standard (Kramers) procedure using the approximation
of frequency-independent damping from the corresponding semiclassical Klein–Kramers
equation for the Wigner function W(x, p, t); this equation to order h̄2 is
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Equation (2) is a partial differential equation for the evolution of the Wigner quasiprobability
distribution W akin to the Klein–Kramers equation and in the classical limit reduces to the
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classical Klein–Kramers equation for the distribution function W(x, p, t) in the phase space
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The main objection of Tsekov [1] is that ‘equation (1) does not describe well enough
the evolution’. Furthermore, equation (1) predicts that ‘the position dispersion σ 2 of the free
Brownian particle [V (x) = 0] obeys the classical Einstein law σ 2 = 2Dt’. From Tsekov’s
point of view the proof of the incorrect behavior is given in [3], where ‘numerical simulations
have shown, however, that the front of the Gaussian quantum diffusion advances as σ ∼ t1/4’.

According to Tsekov’s quantum theory of thermodynamic relaxation (TQTTR) [4, 5],
his ‘advanced Smoluchowski’ equation
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(Ĥ is the Brownian particle Hamiltonian) describes correctly the evolution of quantum systems.
We remark that in the weak coupling limit (treated in [2]) Tsekov’s equation (4) predicts for
the free Brownian particle (equation (7) of [1])
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We also remark that according to the TQTTR [5], the corresponding kinetic equation for
the classical distribution function W(x, p, t) in the phase space (corresponding to the Klein–
Kramers equation (3)) is the last equation on page 70 of [5]; in our notation
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Finally, if the system is close to equilibrium Tsekov states that one can derive from
equation (4)
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where Veff(x) = V (x) + h̄2β

24m
V ′′(x) + · · · is an effective potential. This equation is the high-

temperature limit of that derived by Ankerhold et al [6] and as we have noticed in [2] it is not
identical to equation (1).

We first note by way of refutation of the points raised by Tsekov that his ‘advanced’
equation (4) is nonlinear. Thus it cannot in any sense be classified as a Smoluchowski equation
which is a linear equation. Moreover, both the quantum equation (5) and Tsekov’s classical
equation (6) exhibit unphysical singular behavior in the limits t → 0 and ζ → 0, respectively.
Furthermore, equation (5) as written makes no physical sense at all as a normalizing time
constant is missing in ln t (we recall that all parameters in the above equation must have the
appropriate physical dimensions). Finally the numerical simulations presented by Cerovski
et al [3] pertain to anomalous diffusion, where σ 2 ∼ tα , and not to the normal diffusion treated
in [2].

Equation (1) indeed predicts that the position dispersion σ 2 of the free Brownian particle
[V (x) = 0] obeys the classical Einstein law σ 2 = 2Dt because with V (x) = 0, equation (1)
coincides with the classical Smoluchowski equation. Moreover, Wigner’s formulation of the
dynamics of the free particle [V (x) = 0 and γ = 0] is formally equivalent in all respects to
the Liouville equation description of the free particle dynamics as evidenced by the evolution
equation for the Wigner quasiprobability distribution W
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which does not depend explicitly on h̄. Now by analogy with the classical kinetic theory,
equations (1) and (2) can be considered as a kinetic model (Stosszahlanzatz) as we have simply
used the extension to the semiclassical case of a heuristic idea originally used by Einstein,
Smoluchowski, Langevin and Kramers in order to calculate drift and diffusion coefficients in
the classical theory of the Brownian motion. Thus allowing us [2] to understand how quantum
effects treated in semiclassical fashion alter the classical Brownian motion in a potential. We
emphasize that equations (1) and (2) can be used to describe the evolution of a quantum system
in the high-temperature and weak-coupling limits only. We remark in passing as shown in [7],
in the noninertial (overdamped) limit, where equation (1) is applicable, that it is in complete
agreement with the quantum escape rate theory. In [2] we have obtained equations (1) and
(2) in the approximation of frequency-independent damping, where the drift and diffusion
coefficients are independent of the time. In the high-temperature limit, this approximation
may be used both in the limits of weak and strong damping. One would expect that the master
equation (2) is a reasonable approximation for the kinetics of a quantum Brownian particle in a
potential V (x), when βh̄ζ/m � 1. For the range of parameters, where such an approximation
is not valid (e.g., throughout the very low-temperature region), other methods should be used.

The quantum Smoluchowski equation (7) is very similar but not identical to equation (1).
We see that equation (7) differs from equation (1) only by the additional term in Veff . However,
this difference is important, because the stationary solution of equation (7) in the high-
temperature limit is

PA(x) ∼ e−βV (x)
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24m
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]
,

which is similar to the coordinate-dependent part of the Wigner phase-space distribution
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,

where ε(x, p) = p2/(2m) + V (x) resulting from omitting the p2 term. However, the true
Wigner equilibrium distribution in configuration space
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does not coincide with PA(x) and so does not satisfy equation (7). This is an obvious drawback
of equation (7). On the other hand, the equilibrium distribution Pst(x) is a stationary solution
of equation (1).

In order to explain the anomalous subdiffusion behavior of σ 2 ∼ tα , the semiclassical
Smoluchowski equation (1) for the configuration space distribution function P(x, t) can be
readily generalized to anomalous semiclassical diffusion (just as in the classical case [8, 9])
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Here the operator 0D
1−α
t ≡ ∂

∂t 0D
−α
t in equation (10) is given by the convolution (the

Riemann–Liouville fractional integral definition)

0D
−α
t W(x, t) = 1

�(α)

∫ t

0

W(x, t ′) dt ′

(t − t ′)1−α
, (11)

where �(z) is the gamma function. The physical meaning of the parameter α is the order of the
fractional derivative in the fractional differential equation describing the continuum limit of a
random walk with a chaotic set of waiting times (often known as a fractal time random walk)
in contrast to the random walk associated with the normal diffusion where the elementary
steps are taken at uniform intervals in time. In particular, equation (10) predicts σ 2 ∼ tα just
as in the classical case [8, 9].

References

[1] Tsekov R 2007 J. Phys. A: Math. Theor. 40 10945
[2] Coffey W T, Kalmykov Yu P, Titov S V and Mulligan B P 2007 J. Phys. A: Math. Theor. 40 F91
[3] Cerovski V Z, Schreiber M and Grimm U 2005 Phys. Rev. B 72 054203
[4] Tsekov R 1995 J. Phys. A: Math. Gen. 28 L557
[5] Tsekov R 2001 Int. J. Mol. Sci. 2 66
[6] Ankerhold J, Grabert H and Pechukas P 2005 Chaos 15 026106
[7] Coffey W T, Kalmykov Yu P, Titov S V and Mulligan B P 2007 Phys. Rev. E 75 041117

Coffey W T, Kalmykov Yu P and Titov S V 2007 J. Chem. Phys. 127 074502
Coffey W T, Kalmykov Yu P, Titov S V and Mulligan B P 2007 Phys. Chem. Chem. Phys. 9 3361

[8] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[9] Coffey W T, Kalmykov Yu P and Waldron J T 2004 The Langevin Equation 2nd edn (Singapore: World Scientific)

http://dx.doi.org/10.1088/1751-8113/40/35/N01
http://dx.doi.org/10.1088/1751-8113/40/3/F02
http://dx.doi.org/10.1103/PhysRevB.72.054203
http://dx.doi.org/10.1088/0305-4470/28/21/007
http://dx.doi.org/10.1063/1.1855731
http://dx.doi.org/10.1103/PhysRevE.75.041117
http://dx.doi.org/10.1063/1.2759486
http://dx.doi.org/10.1039/b614554j
http://dx.doi.org/10.1016/S0370-1573(00)00070-3

	References

